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MSTIDs at low latitudes — How | cast my lot with the
motley crew.

MSTIDs at high latitudes.
AGWs and MSTIDs observed with SuperDARN.

Outstanding Science Questions
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Equatorial Irregularities at Hawaii

Percentage of nights with bubbles > 400 km at CNFI
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Equatorial Irregularities at Hawaii

Percentage of nights with bubbles > 400 km at CNFI
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Conjugacy of MSTIDs
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Climatology of low-latitude MSTIDs

¢ Climatology from Haleakala, HI, 2007-2009 (after Makela
and Miller, 2010).
e Preference for solstices (shared with E, not shown).
e Associated with VHF backscatter (FAI) and bubble
formation.
a) Occurrence of MSTIDs from 1900 - 2300 LT b) Occurrence of MSTIDs from 0000 - 0400 LT
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lonospheric waves (TIDs)

Blackstone SuperDARN beam #7 - 15 November 2009
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e Wavelike structures observed on HF links since early radio.

e Called “traveling ionospheric disturbances” (TIDs).

e Dedicated (e.g., CADI, TIDDBIT) stations/arrays
deployed to study.
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lonospheric waves (TIDs)

Radio signature is change in skip distance/focusing due
to variations in F region peak altitude and density.

TIDs eventually classified into
e Large-Scale (1000s of km wavelength, 100s of m/s
velocity); typically associated with geomagnetic activity.
e Medium-Scale (100s of km wavelength, 10s to 100s of
m/s velocity); ubiquitous.

No particular preference for azimuth or season at higher
latitudes.

Widely attributed to acoustic-gravity waves generated in
the auroral zone.
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Airglow Bands — MSTIDs

01:33:26 UT 01:38:35 UT p ime: 120 8 01:43:45 UT

Dark bands and wave structures observed in 1990s by

Mendillo and others.

e Coordinated observations with Arecibo UHF radar
indicated height perturbation in F-region (cf Behnke,
1979).

e Aligned NW-SE (northern hemisphere), propagate SW.

Miller and Talaat SuperDARN 2011 — MSTIDs



Airglow Bands — MSTIDs
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e Raised regions correspond to minimum airglow, lowered
regions to maximum.

e Gravity waves alone unlikely to produce this structure —
coupled to electrodynamics.

e But, is this the same as the radio TIDs?
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MSTIDs and SuperDARN

e |dentify MSTIDs in Boston U.'s airglow images from
Millstone Hill, MA (“BUM" on map).

e Examine SuperDARN data from Wallops Island, VA,
(“"WAL") during same time period.
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MSTIDs and SuperDARN

Wallops Island SuperDARN beam #7 - 15 May 2010
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MSTIDs and SuperDARN

e Employ 2.5D HF raytrace similar to well-known
Jones-Stephenson code.

e Parabolic ionosphere parameterized by Millstone Hill
ionosonde.

e Geomagnetic field from IGRF-11.

e Creates a key to identifying backscatter signatures.

15 May 2010 - Wallops Island SuperDARN beam #7 - 10.5 MHz
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MSTIDs and SuperDARN

e Triple-hop sporadic-E (G-E;) ground scatter 0000-0045

UT.
e Field-aligned irregularity (FAI) scatter from locations
where k 1 B.

e How to differentiate between FAI-F and G-E.7

15 May 2010 - Wallops IsIand SuperDARN beam #7 - 10.5 MHz
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MSTIDs and SuperDARN

Millstone 6300 - 20 July (201) 2009 - 0138 UT  Millstone 6300 - 20 July (201) 2009 - 0143 UT  Millstone 6300 - 20 July (201) 2009 - 0146 UT
°

Geo. Latitude [deg]
Geo. Latitude [deg]
.

-75 -70 -65 -75 -70 -65 -75 -70 -65

Geo. Longitude [deg] Geo. Longitude [deg] Geo. Longitude [deg]
40
30 &
=
20 o
0 %
?00

50

-50
-100

o
Doppler [m/s]

Universal Time [hr]

Miller and Talaat SuperDARN 2011 — MSTIDs



Evolution of E; — FAI-E; — FAI-F

e 15 May 2010 Wallops Island example again.

e FAIl has non-zero Doppler velocity (not 100%, but true for
geometry).

e FAI-E, appears 0040-0120, 0200-0300 UT.

e FAI-F appears out of FAI-E; around 0230 UT: same time
that band structure appears in airglow.
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Theory of E; — FAI-E; — FAI-F

e Patchy E, layers — E,
(polarization E-field).

o Meter-scale irregularities

form between patches B{
—
1 o — —
(sometl m.esd ca I Ief] o e — ——
quasi-periodic echoes, —

QPE) ¢(X,y:‘,)‘-.“.‘-".
e E, maps efficiently along ‘
geomagnetic field, B.

e E, causes F region to
become unstable as
described by Perkins.
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The Perkins Instability

Stable: Eastward €
or Sowtheoard U

Unstable: Nordheward &
or éastward U

o After Perkins, 1973. Updated by Cosgrove and Tsunoda
to include E; layer coupling — increases growth rate.

e Produces NW-SE aligned structure.

e Linear growth rate too small. Wrong propagation
direction.
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An Alternative Theory

o After Kelley, 2011.
e Wind-driven currents in gravity waves are cancelled by
E, x B currents in the preferred Perkins NW-SE
(northern hemisphere) orientation.
e Winds in gravity waves are parallel to the wave fronts.
e E, is parallel to the wavevector — E, x B is also parallel
to k.
e That is, there is no net current to cause Joule heating
that will dissipate the wave's energy.
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MSTID vs MSTAD

e MSTAD: traveling atmospheric disturbance
e Acoustic-gravity wave.
e Period of 1s to 10s of minutes.
e Ubiquitous at high-/mid-latitudes. No seasonality has
been established.
e MSTID: traveling ionospheric disturbance
e Mid-latitude, nighttime phenomenon.
o Electrified (appear in opposite hemispheres). Propagate
westward and toward the equator.
e Frequently concurrent to sporadic-E layers.
e Strongly seasonal (share solstice peaks with E layers).
e Also observed at very low (equatorial) latitudes during
deep solar minimum.
e Origin unknown.
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Future Directions

Understand role of E; layers in initiating MSTIDs.
e Standard SuperDARN may not work for this.
e Arecibo ISR with heater and imagers might help image
E layers (Bernhardt).

Get more all-sky imagers collocated with SuperDARN
radars — sky conditions.

Explore MSTID signatures in spacecraft optical data
e DMSP/SSUSI and TIMED/GUVI UV (Comberiate)
e DMSP/SSUSI visible (Miller, unreported)
Investigate whether Kelley's theory holds (better than
Perkins') at very low latitudes.
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